8 research outputs found

    Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation

    Get PDF
    We present a model to estimate the technical requirements, including the photovoltaic area and battery capacity, along with the costs, for a four-person household to be 100% electrically self-sufficient in Germany. We model the hourly electricity consumption of private households with quasi-Fourier series and an autoregressive statistical model based on data from Berlin in 2010. Combining the consumption model and remote-sensed hourly solar irradiance data from the ERA5 data set, we find the optimal photovoltaic area and battery capacity that would have been necessary to be self-sufficient in electricity from July 2002 to June 2022. We show that it is possible to build a self-sufficient household with today’s storage technology for private households and estimate the costs expected to do so

    Reducing the number of templates for aligned-spin compact binary coalescence gravitational wave searches using metric-agnostic template nudging

    Full text link
    Efficient multi-dimensional template placement is crucial in computationally intensive matched-filtering searches for Gravitational Waves (GWs). Here, we implement the Neighboring Cell Algorithm (NCA) to improve the detection volume of an existing Compact Binary Coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from over-dense regions to under-dense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned--single-spin neutron-star--black-hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates

    Estimation of Asymmetric Spatial Autoregressive Dependence on Irregular Lattices

    Get PDF
    In spatial econometrics, we usually assume that the spatial dependence structure is known and that all information about it is contained in a spatial weights matrix W. However, in practice, the structure of W is unknown a priori and difficult to obtain, especially for asymmetric dependence. In this paper, we propose a data-driven method to obtain W, whether it is symmetric or asymmetric. This is achieved by calculating the area overlap of the adjacent regions/districts with a given shape (a pizza-like shape, in our case). With W determined in this way, we estimate the potentially asymmetric spatial autoregressive dependence on irregular lattices. We verify our method using Monte Carlo simulations for finite samples and compare it with classical approaches such as Queen’s contiguity matrices and inverse-distance weighting matrices. Finally, our method is applied to model the evolution of sales prices for building land in Brandenburg, Germany. We show that the price evolution and its spatial dependence are mainly driven by the orientation towards Berlin

    Solar self-sufficient households as a driving factor for sustainability transformation

    Get PDF
    We present a model to estimate the technical requirements, including the photovoltaic area and battery capacity, along with the costs, for a four-person household to be 100% electrically self-sufficient in Germany. We model the hourly electricity consumption of private households with quasi-Fourier series and an autoregressive statistical model based on data from Berlin in 2010. Combining the consumption model and remote-sensed hourly solar irradiance data from the ERA5 data set, we find the optimal photovoltaic area and battery capacity that would have been necessary to be self-sufficient in electricity from July 2002 to June 2022. We show that it is possible to build a self-sufficient household with today’s storage technology for private households and estimate the costs expected to do so

    Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation

    No full text
    We present a model to estimate the technical requirements, including the photovoltaic area and battery capacity, along with the costs, for a four-person household to be 100% electrically self-sufficient in Germany. We model the hourly electricity consumption of private households with quasi-Fourier series and an autoregressive statistical model based on data from Berlin in 2010. Combining the consumption model and remote-sensed hourly solar irradiance data from the ERA5 data set, we find the optimal photovoltaic area and battery capacity that would have been necessary to be self-sufficient in electricity from July 2002 to June 2022. We show that it is possible to build a self-sufficient household with today’s storage technology for private households and estimate the costs expected to do so

    Pflanzen- und Tierfette (ausgenommen Milchfette) Vorkommen, Gewinnung, Zusammensetzung, Eigenschaften, Verwendung

    No full text
    corecore